Archivi tag: operazionale

Intregratore con Operazionale

Lo schema elettrico di un circuito integratore è il seguente:

Integratore

possiamo notare la presenza del condensatore C il quale riporta indietro parte della tensione di uscita. In pratica il circuito funziona nel seguente modo. Partendo dall’istante iniziale in cui il condensatore è scarico, applichiamo in ingresso una certa tensione Vi che ritroviamo in uscita sfasata e amplificata; poiché l’ingresso invertente si trova a massa virtuale, cioè non assorbe corrente e la sua tensione rispetto a massa è zero, il condensatore C si carica seguendo la Vu, che è sfasata di 180° rispetto alla Vi  ma a corrente costante, infatti tutta la corrente in ingresso percorre sia il resistore R che il condensatore C, poiché l’ingresso invertente è a massa virtuale e non assorbe corrente. Il tempo i cui il condensatore si carica è t = RC, cioè raggiunge la carica a piena tensione nel tempo t, sempre che il segnale vi si mantenga costante fino a farlo caricare. Tuttavia per il corretto funzionamento del circuito, occorre fare in modo che il condensatore non si carichi mai, cioè il segnale in ingresso deve avere un periodo più piccolo di t, altrimenti, uno volta carico, il condensatore si comporta come un circuito aperto, che non assorbe corrente, quindi ha impedenza infinita, e il guadagno dell’amplificatore operazionale sarebbe al massimo, perché viene meno la reazione negativa del condensatore, e quindi l’amplificatore va in saturazione smettendo di funzionare da integratore.

Se applichiamo in ingresso un segnale di tipo rettangolare, come il seguente, avente un periodo T minore di t, otteniamo che Vu = Vc, secondo il seguente diagramma:

Integratore grafico

Il diagramma superiore rappresenta il segnale di ingresso, che è di tipo rettangolare, e quello inferiore il segnale di uscita a regime, cioè trascurando l’istante iniziale. In pratica all’istante t=0 il condensatore è carico ad un certo valore vu0; il segnale vi , durante il semiperiodo positivo dell’onda rettangolare, fa sì che il condensatore si carichi con tensione negativa, quindi la tensione del condensatore decresce, fino a raggiungere il valore massimo negativo, che abbiamo detto, deve essere inferiore alla saturazione; invertendo ora il segnale di ingresso, che diventa negativo, il condensatore è costretto prima a scaricarsi e poi a caricarsi con segno contrario, cioè positivo. Notiamo che partendo da una forma d’onda di tipo rettangolare abbiamo ottenuto una forma d’onda di tipo triangolare, della stessa frequenza del segnale di ingresso.

Per evitare che l’amplificatore vada in saturazione alle basse frequenze, si mette in parallelo al condensatore C un resistore R2, secondo il seguente schema:

integratore reale

Dallo schema, possiamo notare, che alle basse frequenze, essendo il periodo della tensione di ingresso abbastanza lungo, il condensatore si carica al valore massimo e quindi non assorbe più corrente, e si comporta come una impedenza infinita, di conseguenza il guadagno diventa:

Av = – R2/R1

Questo tipo di integratore, viene detto integratore limitato. Sapendo che la frequenza di taglio(ft) deve essere minore di fs 10Khz abbiamo scelto il valore di ft, mettendola a 5000 hz,successivamente abbiamo calcolato i valori della resistenza e del condensatore, utilizzando la formula inversa di ft.

Ft=1/(2*3,14*R1*C)

R1C=1/2*3,14*ft)=0,000031

conoscendo il valore di R1C possiamo trovarci il valore dei due componenti,basterà soltanto rispettare la seguente relazione:

R1C=0,000031

Detto ciò abbiamo assegnato ad :

R1=31Kohm

C=1nF

R2=1Kohm valore scelto per convenzione

Derivatore con Operazionale

Il derivatore analogico è un circuito che fornisce in uscita un segnale proporzionale alla derivata del segnale di ingresso. Tale circuito si ottiene dalla configurazione invertente sotto indicata, sostituendo all’impedenza Z1 il condensatore C e all’impedenza Z2 la resistenza R.

Derivatore

L’uso dei derivatori, invece delle reti RC passive, è diffuso sia per la possibilità di amplificazione offerta dagli amplificatori operazionali, sia per l’impedenza di uscita trascurabile degli stessi.

Derivatore ideale

L’appellativo ideale è necessario quando si parla di amplificatori operazionali poiché si introducono ipotesi semplificative. Dalla figura si vede che il derivatore ideale è costituito da un amplificatore operazionale invertente con un condensatore in serie all’ingresso.

Derivatore ideale

Poiché non entra corrente nell’amplificatore operazionale allora la corrente che attraversa il condensatore è la stessa che attraversa la resistenza R, per cui I1 = I2.

Ricordando la relazione che lega la corrente alla tensione per il condensatore :

I = C dV/dt

e considerando il circuito sopra indicato ne deriva che:

I1 = C ( dVin / dt ) = I2 = – ( Vout / R )

Ricavando V out da quest’ultima:

Vout = -RC ( dVin / dt )

Risulta evidente che la tensione di uscita V out dipende dalla derivata della tensione di ingresso ( dVin / dt ) attraverso un fattore di guadagno pari a (-RC) . In tal modo associando alla tensione di ingresso un segnale, in uscita otteniamo il segnale derivato (e amplificato).

Il difetto principale del derivatore ideale è che il guadagno del derivatore cresce sensibilmente all’aumentare della frequenza del segnale di ingresso, risultando molto sensibile ai disturbi di frequenza elevata.

Deriva allora, che il guadagno del derivatore risulta limitato solo dalla risposta in frequenza dell’amplificatore operazionale, che porta facilmente la V out ai livelli di saturazione.

Derivatore reale

Si ricorre a tale configurazione per ottenere un circuito che limiti la risposta alle alte frequenze. Il derivatore reale si ottiene inserendo in serie al condensatore C una resistenza R1 .

Derivatore Reale

Naturalmente, affinché il circuito si comporti come derivatore, occorre che la frequenza del segnale di ingresso sia molto minore della frequenza fp = 1 / (2p R1 C).

Il massimo valore a cui la frequenza fp si può collocare è determinato dai criteri di stabilità: in ogni caso, fp non può essere troppo elevata affinché la curva di risposta propria dell’amplificatore operazionale non interferisca con la risposta del derivatore.

Tabella derivatore

Risposta in frequenza di un amplificatore operazionale

In questo tutoria di elettronica utilizzeremo un amplificatore operazionale  in configurazione invertente misurandoci con l’ausilio di un oscilloscopio la frequenza e l’ampiezza del segnale d’uscita Vo variando la resistenza R2 da un valore ad un altro. Osserveremo la larghezza di banda di un amplificatore operazionale data dalla differenza tra la frequenza di taglio superiore ed inferiore(se esse sono molto vicine tra loro si avrà un amplificatore molto selettivo).

A.O(nella figura di sopra è rappresentata la banda passante di un amplificatore operazionale con dei condensatori all’uscita che filtrano la parte continua del segnale,ma nel nostro caso non ci sono perciò la banba inizia da VoutMAX)

Materiale da adoperare:

  • Generatore di frequenza, utilizzato per generare il segnale che entrava nell’ingresso invertente dell’operazionale Vi=+- 0,75V   F=1Khz
  • Oscilloscopio col quale abbiamo osservato Vi e Vo
  • Vari cavi coassiali con connettori o a banana o a coccodrillo
  • Logic lab sulla quale abbiamo montato ed alimentato il circuito dell’esperienza
  • 3 resistenze da ¼ di Watt ina da 1 Kohm   11,5 Kohm   3,3 Kohm
  • Un tester col quale abbiamo misurato in maniera soddisfacente le resistenze
  • Un amplificatore operazionale Ua741 in configurazione invertente.

aUna volta montato il circuito sulla breadboard misurate prima l’uscita dell’operazionale con R1=1Kohm ed R2=11,5Kohm ottenendo un amplificazione di

Vo= – (R2/R1)*Vi= – (11,5*1000/1*1000)*0,75 = 8,6V

Successivamente aumentate il valore della frequenza Fi da 1000hz (valore iniziale )fino a 100000hz.

risposta in frequenzatabella 1

Il guadagno G si calcola facendo 20LOG(Vo/Vi), dalle seguenti misure possiamo dedurre che all’ aumentare della frequenza d’ingresso l’ampiezza del segnale d’uscita diminuisce sempre di più fino ad arrivare quasi a 0 tutto ciò perché il nostro amplificatore operazionale ha una banda passante .Per trovare i valori della frequenza abbiamo utilizzato la formula inversa del periodo perciò F=1/T . All’uscita di questo circuito avevamo un segnale sinusoidale invertito di 180 gradi rispetto a quello iniziale. La nostra banda passante finirà quando il guadagno dell’amplificatore sarà uguale al guadagno iniziale 21,18-3=18,18 detto ciò possiamo dire che la nostra banda passante va dai 1000hz fino ai 29000hz. Nel secondo va messa una R2 più piccola rispetto alla prima, dopodichè  eseguito  nuove misurazioni.

Vo= – (R2/R1)*Vi = – (3,3*1000/1*1000)*0,75 = 2,5V

tabella 2

Da questi risultati osserviamo che con un amplificazione minore l’operazionale ha un guadagno minore ma una larghezza di banda maggiore infatti il guadagno scende sotto al valore 7,45 dopo aver superato i 150000hz. Da ciò possiamo dedurre che se si vuole far un amplificatore che abbia un elevata ampiezza ed un elevato guadagno bisognerà rinunciare ad una elevata larghezza di banda. Realmente si lha la banda passante massima quando si ha l’operazionale in configurazione ad anello aperto.

 

 

 

RADDRIZZATORI CON OPERAZIONALI

I raddrizzatori (o rettificatori) sono circuiti per la trasformazione di segnali bidirezionali in segnali unidirezionali. Se si utilizzano soltanto dei diodi per raddrizzare un segnale si ha lo svantaggio che la tensione di uscita sarà uguale alla tensione d’ingresso meno più o meno 0,7V cioè la tensione del diodo, perciò se volessimo raddrizzare un segnale di 0,7V in uscita al diodo avremmo 0V perché al segnale d’ingresso va sottratta la tensione del diodo. Per evitare questo inconveniente esistono circuiti raddrizzatori di precisione che possono raddrizzare segnali inferiori ai 0,7V.

In questo tutorial realizzerete due circuiti:

  1. il primo è un normale circuito raddrizzatore di precisione,mentre
  2. il secondo è un raddrizzatore di precisione a singola semionda.

Materiale e strumenti adoperati:

  • UA741 è l’operazionale che abbiamo adoperato per svolgere l’esperienza
  • Due diodi 1n4148 diodi ad alta frequenza
  • Logic lab sulla quale abbiamo montato ed alimentato il circuito.
  • Tre resistenze da 10Kohm ed 1/4 W
  • Un oscilloscopio col quale abbiamo misurato i segnali d’ingresso ed uscita del raddrizzatore
  • Un generatore di frequenza col quale abbiamo generato il segnale d’ingresso

Montate il raddrizzatore composto da:

  • Un operazionale utilizzato come inseguitore il cui vantaggio è quello di adattare l’impedenza
  • Un diodo polarizzato direttamente che fa passare soltanto la parte positiva del segnale entrante,fermando quella negativa
  • Un resistenza RL che è il nostro carico

Raddrizzatore

Il funzionamento di questo circuito è molto semplice perché il segnale entrante Vin rimane invariato e la caduta di tensione sul diodo viene annullata (per effetto della retroazione)dandoci in uscita un segnale unidirezionale (positivo). Bisogna fare attenzione però alla frequenza di lavoro del diodo,  perché se il diodo ha una frequenza di lavoro inferiore alla frequenza del segnale entrante ci saranno dei malfunzionamenti, se invece è superiore non ci cambia nulla, infatti, in questo tutorial la frequenza del segnale Vi è di 10000Hz questo valore rientra nella zona di lavoro del diodo. Il raddrizzatore di precisione nella configurazione di base non viene comunemente usato in quanto ha un problema: quando il segnale d’ingresso diventa (anche leggermente) negativo, l’amplificatore operazionale funziona in anello aperto. Questo porta facilmente l’uscita dell’amplificatore operazionale ad essere maggiore della tensione di alimentazione, inducendone così la saturazione. Quando l’entrata torna ad essere positiva, l’amplificatore deve uscire dalla saturazione per riattivarsi. Questo passaggio richiede un certo tempo, riducendo fortemente la risposta in frequenza del circuito.

 

Il secondo circuito realizzato è un raddrizzatore di precisione a singola semionda .

Raddrizzatore 2

Il circuito è composto da:

  • Un amplificatore operazionale in configurazione invertente
  • Tre resistenze da 10 Kohm R1 ed R2 servono a decidere di quanto deve amplificare l’amplificatore
  • Due diodi che ci permettono di far passare solo la semionda negativa del segnale

Il funzionamento di questo circuito è un po più complesso di quello precedente perché quando Vin è positiva il diodo D2 sarà in conduzione mentre D1 non lo sarà dando in uscita una tensione pari a 0 V. Quando invece abbiamo Vin negativa la musica cambia perché il diodo D2 non sarà in conduzione mentre il diodo D1 lo sarà, inoltre non va dimenticato che l’operazionale è in configurazione invertente, e ciò comporta ad un amplificazione pari ad 1 perché R1=R2 ed ad uno sfasamento del segnale d’uscita di 180 gradi rispetto a quello d’entrata. Detto ciò possiamo dedurre che in uscita avremo una tensione pari a 0V quando il segnale d ‘ingresso è positivo,ed avremo una tensione d’uscita uguale alla semionda negativa d’ingresso sfasata di 180 gradi quando in ingresso avremo la semionda negativa.